
Transparent Grid Enablement of WRF Using a Transparent Grid Enablement of WRF Using a
Profiling, Code Inspection, and Modeling Approach Profiling, Code Inspection, and Modeling Approach

I. MotivationI. Motivation

� The impact of the hurricanes is so devastating throughout different levels of the society

that there is a pressing need to provide a range of users with accurate, timely information to enable

effective planning for and response to potential hurricane landfalls.

� The popular Weather Research and Forecasting (WRF) model is the latest

numerical model developed by the National Center for Atmospheric Research (NCAR) for both

operational forecasting and atmospheric research and has been adopted by meteorological services

in the U.S. and world wide.

� The high resource requirements of the WRF demand a large number of computing

nodes with high volume of memory and storage, connected through high-speed networks.

� The budget limitation is the main inhibiting factor that prevents typical organization from

satisfying the increasing resource requirements of the WRF code! Unfortunately, the WRF code

was not developed to scale out to a Grid computing environment.

� Note: the current version of WRF is designated to run either on a single machine or on a

cluster of homogeneous nodes.

�� Enabling WRF to scale out to Grid computing environmentsEnabling WRF to scale out to Grid computing environments so that it can benefit

from the available resources in other partner organizations.

�� Modeling WRF behavior and its resource requirements Modeling WRF behavior and its resource requirements to estimate the time required

for a simulation given a particular set of resources and predict the allocation of resources.

� For example, the optimized number of homogenous nodes required for a hurricane path

prediction simulation.

� The high latency of Internet compared to high-speed LANs does not satisfy the real-

time requirements of the WRF code.

� For example, we cannot simply use domain decomposition for grid enablement of WRF due to

significant overhead as the boundary grid points assigned to run on the resources in one

organization need to communicate with their neighboring grid points assigned to another

partner organization potentially across the Internet.

� The high overhead of the Grid middleware software, such as Globus Toolkit (GT4)

and Community Toolkit (CoG), and inefficiency of the meta-schedulers are other inhibitors for

Grid-enablement of real-time applications like WRF.

� Risking compatibility with future WRF versions, if we make manual and ad-hoc

modifications to the WRF source code. Therefore, we need a systematic approach for Grid

enablement of the WRF code, where the modification is transparent to the original code.

� The high volume of the WRF sources code makes it hard to get a full grasp of the whole

code and to model its behavior.

� ~ 165,000 lines of source code and another 40,000 lines generated at compile time.

� Compiling WRF on unsupported platforms is a tedious task! NCAR has supported

several platforms, but unfortunately NCAR has not yet provided configuration files to make the

compilation of WRF straightforward on some of the platforms at our disposal.

� For example, the Power5 cluster at UNF and the Power4 31-way node at FIU.

Team: S. Masoud Sadjadi1, Javier Muñoz1, Diego Lopez1, Javier Figueroa1, Xabriel J. Collazo-Mojica6, David Villegas1, Raju Rangaswami1, Shu

Shimizu4, Hector A. Duran Limon5, Rosa Badia2, Pat Welsh3, Jason Liu1, Alex Orta1, Michael McFail1, and Erik Jones3

1: Florida International University, Miami, FL, USA; 2: Barcelona Supercomputing Center, Barcelona, Spain; 3: University of North Florida, Jacksonville, FL, USA; 4:

IBM Tokyo Research Laboratory, Tokyo, Japan; 5: University of Guadalajara, Mexico; 6: University of Puerto Rico- Mayaguez Campus, Puerto Rico;

IV. Mathematical ModellingIV. Mathematical Modelling

� We assume that

� resource consumption consists of any forms of static resource parameters such as CPU cycles.

� parallelism (the 1st bracket term in the mathematical model below) is independent of the static

resource parameters (the 2nd bracket term).

� The expression is finally transformed into a linear summation of profile parameters (θ’s), which

are estimated as an application’s characteristic.

()

εθθ

εββββββαα

++≡

++++++

+=

∑

∑

=

=

1

0

443cache2CPU10

4

1

0

k

kk

networkdiskmemory

k

k

k

y

bbbbbnx Λ

Error :

estimated) be (to parameters Profile :,,

) and ofon (combinati sy variableExplanator :

(given) parameters resource static and mParalleris :,

time)execution (e.g., variableCriterion :

X

X

ε

θβα kkk

k
bny

bn

x

� Application profiles are derived by executing the application on different

platforms with varied configuration of available resources.

3GHz/512KB

2GHz/512KB
2.8GHz/512KB

2GHz/2048KB

550GHz/512KB

700GHz/256KB

Profile parameters (β0, β1, and β2)

estimated as a plane (constant n=1)

Mathematical ModelingMathematical Modeling

Parameter EstimationParameter Estimation

ProfilingProfiling
Code Inspection &Code Inspection &

ModelingModeling

MODELINGMODELINGMODELINGMODELINGMODELINGMODELINGMODELINGMODELING

WRFWRFWRFWRFWRFWRFWRFWRF

BEHAVIORBEHAVIORBEHAVIORBEHAVIORBEHAVIORBEHAVIORBEHAVIORBEHAVIORThis poster focuses on this goal.This poster focuses on this goal.

VI. Parameter EstimationVI. Parameter Estimation

Cons: Cons:

- No g95 Support yet!

- Instrumentation is

tedious and error prone.

- Steep learning curve.

- Many features depend

on other software.

Pros:Pros:

- It has a profile visualization tool that provides graphical

displays of all the performance analysis results, in

aggregate and single node/context/thread forms.

- It can generate event traces that can be displayed with

the Vampir, Paraver or JumpShot trace visualization tools.

- It supports MPI and OpenMP. It will soon support g95.

- Free license, just have to request a copy through email.

- Good documentation.

TAUTAU

V. ProfilingV. Profiling

� We evaluated 21 existing profilers
� Vampir/ITAC, XMPI, MPIP, KOJAK, Paraver, Gprof, TAU, PGI CDK, OPT, MPE/Jumpshot, Paradyn, SvPablo,

VTune, HPC Toolkit, Etnus TotalView, Open|SpeedShop, Oprofile, PapiEx, IPM, DEEP/MPI, and PerfSuite.

� We chose to use IBM Toolkit, Paraver, and TAU for our profiling experiments.

� We developed custom-designed profiling tools
� amon is a monitoring tool that collects static resource parameters, including CPU speed and cache size, and

provides the average dynamic resource consumption, including cpu time, memory, network, and storage.

VII. Code Inspection & ModellingVII. Code Inspection & Modelling

II. GoalsII. Goals

III. ChallengesIII. Challenges

GCB cluster: 8 nodes with dual 3.0GHz CPUs

interconnected with a dedicated 1 Gb/s switch; WRF

Experiment: 75x75 @ 2Km

0

50

100

150

200

250

0 2 4 6 8 10

Number of nodes

W
a
ll

 c
lo

c
k
 t

im
e
 (

m
in

s
)

Prediction of Resource Usage

Model Layer

Mediation Layer

Driver Layer

Physics Interface

Various Physics Models

WRF Software Framework

Integrate ModuleThe wrf_init subroutine calls

� We use code inspection and

modelling to justify why WRF

behaves as it does.

� We provide feedback to the

mathematical modelling

� may result in adding or

removing parameters

� may result in reflecting the

dependencies of two or

more parameters.

� Regression analysis is then used

to fit the data into a linear model

(in terms of profile parameters).

� As more observations are made,

the accuracy of the model

generated improves.

� This model is then subsequently

used for predicting application

execution and resource usage on

previously “unseen” platforms.

